Margination of micro- and nano-particles in blood flow and its effect on drug delivery
نویسندگان
چکیده
Drug delivery by micro- and nano-carriers enables controlled transport of pharmaceuticals to targeted sites. Even though carrier fabrication has made much progress recently, the delivery including controlled particle distribution and adhesion within the body remains a great challenge. The adhesion of carriers is strongly affected by their margination properties (migration toward walls) in the microvasculature. To investigate margination characteristics of carriers of different shapes and sizes and to elucidate the relevant physical mechanisms, we employ mesoscopic hydrodynamic simulations of blood flow. Particle margination is studied for a wide range of hematocrit values, vessel sizes, and flow rates, using two- and three-dimensional models. The simulations show that the margination properties of particles improve with increasing carrier size. Spherical particles yield slightly better margination than ellipsoidal carriers; however, ellipsoidal particles exhibit a slower rotational dynamics near a wall favoring their adhesion. In conclusion, micron-sized ellipsoidal particles are favorable for drug delivery in comparison with sub-micron spherical particles.
منابع مشابه
The effect of micro/nano-particles on pressure drop in Oil pipeline: Simulation
A high pressure drop happens when heavy oil with high viscosity moves through the oil pipeline. A variety of methods to avoid this pressure drop is available. One of which is injection of chemicals to reduce the viscosity and ultimately reduce pressure drop. Using the pipesim software, the effect of dispersion of nano and micro-particles into the oil has been simulated to study the amount of th...
متن کاملThe effect of micro/nano-particles on pressure drop in Oil pipeline: Simulation
A high pressure drop happens when heavy oil with high viscosity moves through the oil pipeline. A variety of methods to avoid this pressure drop is available. One of which is injection of chemicals to reduce the viscosity and ultimately reduce pressure drop. Using the pipesim software, the effect of dispersion of nano and micro-particles into the oil has been simulated to study the amount of th...
متن کاملP107: Using Nano Particles as a Novel Application for Alzheimer’s Disease; an Effective Endeavor for Drug Delivery
As the most common cause of dementia among the elderly results in cognitive and ‎behavioral impairment, Alzheimer’s disease (AD) is characterized with aggregation of senile ‎plaques (Beta-amyloid protein), cortical atrophy and ventricular enlargement. Unfortunately, ‎conventional methods like acetyl cholinesterase inhibitor drugs, are not so effective owing to ‎restrictive...
متن کاملEffect of static magnetic field on the hemodynamic properties of blood flow containing magnetic substances
The use of magnetic fields in targeted drug delivery, especially for treatment of cancers and tumoral regions, is one of the significant techniques in the field of modern methods of treatment. Considering that many vital biological tissues have been located deep in the body, then for targeted drug delivery and effective treatment in these tissues, it is required to bring therapeutic agent to th...
متن کاملSynthesis and Characterization of Novel Modified and Functionalized Silica Nano-particles for Protein Delivery Applications
In this study, the synthesis, characterization and controlled release behavior of new Hollow Silica Nano particles (HSNPs) and Magnetic Silica Nano Particles (MSNPs) were studied. Magnetic Silica Nano particles (MSNPs), as drug delivery vehicles, were synthesized through the coating of Fe3O4 nano-crystals with silica layers. The HSNPs were obtained by removal of Fe3O4 templates with hydrochlori...
متن کامل